

TLV320AIC32x4 Power Supply Sequencing

Jorge Arbona, Peter Pai, Sunil Rafeeque, Shridhar More, and Nitesh Kekre

Portable Audio

ABSTRACT

The TLV320AlC32x4 is capable of multiple power supply configurations. Power can be applied externally to support multiple voltage levels as well as internal generation of the analog and digital supply. This document discusses proper supply sequencing for these configurations.

Contents 1 3 Internal DLDO and ALDO Power Supply Sequence 5 4 **List of Figures** 1 TLV320AlC32x4 Power Management Architecture ____________2 2 3 4 **List of Tables** 1 2 3

Introduction www.ti.com

1 Introduction

This document is divided into two parts: external supply configurations and internal supply configurations. The application report <u>SLAA404</u> and the relevant product data sheet provide detailed information on power supply configurations. The TLV320AlC32x4 power management architecture is shown in Figure 1 as a reference.

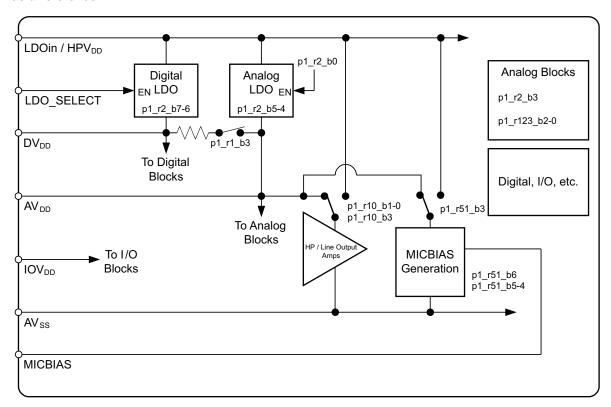


Figure 1. TLV320AIC32x4 Power Management Architecture

2 External DV_{DD} and AV_{DD} Power Supply Sequence

The recommended power sequence for this configuration is to provide all supplies simultaneously. A typical configuration in such a case is to use a single 1.8-V supply for IOV_{DD} , DV_{DD} , LDOin, and AV_{DD} .

Another alternative is to separate analog and digital supplies. This is useful to improve the efficiency of the digital rails by using a dc/dc converter, while keeping the AV_{DD} supply clean by using a low-dropout regulator (LDO). This LDO can be external or internal.

The LDOin supply can be sourced by an external supply of 1.9 V to 3.6 V to allow a higher signal swing at the headphone and line-out amplifiers, as well as to provide a wider range of MICBIAS supply options and output common-mode voltage. In the case where a 1.8-V rail is sufficient for output swing, LDOin must be tied to AV_{DD} .

Figure 2 shows a timing diagram for the case where all supplies are provided separately. In such a case, the depicted sequence must be used. The dashed lines marked in blue color represent an internally supplied voltage.

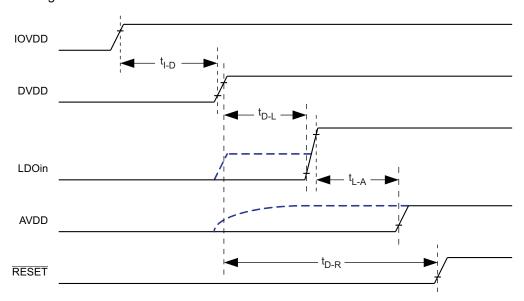


Figure 2. DV_{DD} and AV_{DD} Externally Provided

 IOV_{DD} must be provided first. Because, by default, DV_{DD} is weakly connected to AV_{DD} by a $10\text{-k}\Omega$ resistor, AV_{DD} ramps up to the DV_{DD} voltage once DV_{DD} is provided at approximately $5 \times 10 \text{ k}\Omega \times C_{AVDD}$, where C_{AVDD} is the A_{VDD} decoupling capacitor. For $C_{AVDD} = 1 \mu F$, the charging time is approximately 50 ms. Parameter t_{D-L} allows AV_{DD} to be stable before HPVDD is provided, which prevents power-on pop on the headphone amplifiers. Immediately after DV_{DD} is provided, the LDOin supply ramps to ~1.5 V. To prevent high currents from DVDD to LDOin, the LDOin supply cannot be externally driven low by the external power source. This means that the external power source must be either high impedance or have a weak pulldown before being enabled. After \overline{RESET} is released (or a software reset is performed), no register writes must be performed within 1 ms.

Table 1. Power Supply Timing Parameters

PARAMETER	MIN	TYP	MAX	COMMENTS	
t _{I-D}	0	0		Time between IOVDD is provided and DV _{DD} is provided.	
t _{D-L}	5×10k×C _{AVDD}	5×10k×C _{AVDD}		Time between DV _{DD} is provided and LDOin is provided. AV _{DD} must be internally present before LDOin to prevent pop at headphone outputs.	
t _{L-A}	0	0		Time between LDOin is provided and AV _{DD} is externally provided.	
t _{D-R}	10 ns	10 ns		Time between DV _{DD} (and IOVDD) is provided and reset can be released.	

AV_{DD} can also be externally supplied at the same time as DV_{DD}. This is shown in Figure 3. The dashed line marked in blue color represents an internally supplied voltage.

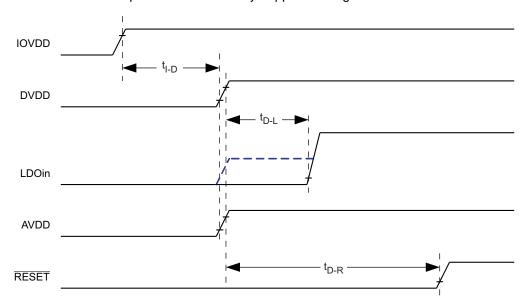


Figure 3. DV_{DD} and AV_{DD} Externally Provided, AV_{DD} Together With DV_{DD}

To prevent high currents from DV_{DD} to LDOin, the LDOin supply cannot be externally driven low by the external power source. This means that the external power source must be either high impedance or have a weak pulldown before being enabled.

After RESET is released (or a software reset is performed), no register writes must be performed within 1 ms.

PARAMETER MIN **TYP** MAX **COMMENTS** Time between IOVDD is provided and DV_{DD} (and AV_{DD}) is provided. $t_{\text{I-D}}$ 0 0 0 0 Time between DV_{DD} (and AV_{DD}) is provided and LDOin is provided. t_{D-L} 10 ns 10 ns Time between $\mathrm{DV}_{\mathrm{DD}}$ (and IOVDD) is provided and reset can be released. t_{D-R}

Table 2. Power Supply Timing Parameters

3 Internal DLDO and ALDO Power Supply Sequence

Generating DV_{DD} and AV_{DD} internally is a common configuration for systems where a single 3.3-V supply is used. The DLDO is enabled by tying the LDO_SELECT pin to the IOVDD supply. As soon as IOVDD and LDOin are provided, DV_{DD} ramps to a nominal 1.72 V. At the same time, the AV_{DD} pin ramps up slower (5 × 10 k Ω × C_{AVDD}) which might result in a pop in the headphone output amplifiers if C_{AVDD} is initially discharged. This pop can be avoided by adding a Schottky diode between DV_{DD} and AV_{DD} pins as shown in Figure 4. Note that, in this configuration, ALDO mode must be chosen such that AV_{DD} voltage is higher than or equal to DV_{DD} voltage. For example, ALDO can be configured as 1.77 V and DLDO as 1.77 V, or ALDO as 1.77 V and DLDO as 1.72 V.

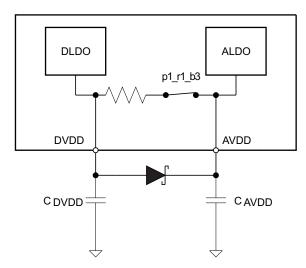


Figure 4. Recommended Circuit to Avoid Headphone Pop

If the internal headphone amplifiers are connected to an external amplifier with mute or shutdown capabilities, it is unnecessary to add a diode. The purpose of this diode is to force the AV_{DD} pin to ramp close to the DV_{DD} voltage at the same time and rate as LDOin is provided.

References www.ti.com

Figure 5 shows the timing diagram for the case where DV_{DD} and AV_{DD} are supplied by the internal LDOs and an external Schottky diode is placed between DV_{DD} and AV_{DD} . The dashed line marked in blue color illustrates the voltage supplied through the external diode. The lines marked in red color illustrate a voltage generated by the internal LDOs.

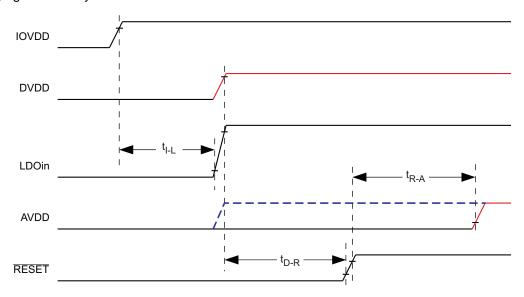


Figure 5. DV_{DD} and AV_{DD} Generated by Internal LDO

As previously mentioned, if the internal headphone amplifiers are connected to an external amplifier with mute or shutdown capabilities, an external diode is not required. For such a case, AV_{DD} ramps to DV_{DD} in approximately 5 × 10 k Ω × C_{AVDD} .

MAX **PARAMETER** MIN **TYP COMMENTS** 0 0 Time between IOVDD is provided and LDOin is provided. t_{I-D} Time between DVDD (and IOVDD) is provided and reset can be released. 10 ns 10 ns t_{D-R} 1 ms 1 ms Time between RESET is released and ALDO is powered. No registers $t_{\text{R-A}}$ must be written for 1 ms after a reset is performed (hardware or software).

Table 3. Power Supply Timing Parameters

4 References

- Design and Configuration Guide for the TLV320Al3204 and TLV320AlC3254 Audio Codecs application report (SLAA404)
- 2. TLV320AlC3254, Ultra Low Power Stereo Audio Codec With Embedded miniDSP data sheet (SLAS549)
- 3. TLV320AIC3204, Ultra Low Power. Stereo Audio Codec data sheet (SLOS602)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com