Application Brief Meeting the Timing Requirements of CAN FD in Isolated CAN Systems for HEV/EVs

TEXAS INSTRUMENTS

Max Robertson, Transceivers Applications Manager; Abhi Aarey, ISO Applications Manager; Neel Seshan, ISO Marketing Manager

For automotive applications, Controller Area Network Flexible Data Rate (CAN FD) has become the de facto standard for most automakers. Unquestionably, the higher speed of CAN FD over Classical CAN enables faster communication of data allowing for more bandwidth, lower latency for the messages, or increased nodes on the CAN bus. Additionally, if the CAN communication is used between different voltage domains as in hybrid electric vehicles (HEVs) and electric vehicles (EVs), digital isolators are often used to help with protection of the low-voltage side from high-voltage side and improve noise immunity.

The CAN protocol is preferred in automotive applications due to its prioritization and arbitration features, making it popular in time-critical applications, such as belt starter generators, traction inverters, battery management systems. Hence the timing specifications of the CAN device become critical when selecting the right device for your system. Table 1 shows the main specifications to consider when designing a system that meets the physical layer requirements of the ISO 11898-2:2016 high-speed CAN specification.

Table 1. ISO 11898-2:2016 high-speed CAN timing specifications

Parameter		MIN	MAX
t _{PROP(LOOP1)}	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant		255 ns
t _{PROP(LOOP2)}	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive		255 ns
t _{BIT(BUS)}	Bit time on CAN bus output pins with $t_{BIT(TXD)}$ = 500 ns (for 2 Mbps CAN FD)	435 ns	530 ns
	Bit time on CAN bus output pins with $t_{BIT(TXD)}$ = 200 ns (for 5 Mbps CAN FD)	155 ns	210 ns
t _{BIT(RXD)}	Bit time on RXD output pins with $t_{BIT(TXD)}$ = 500 ns (for 2 Mbps CAN FD)	400 ns	550 ns

Table 1. ISO 11898-2:2016 high-speed CAN timing specifications (continued)

Parameter		MIN	MAX
	Bit time on RXD output pins with $t_{BIT(TXD)}$ = 200 ns (for 5 Mbps CAN FD)	120 ns	220 ns

Figure 1 and Figure 2 show the test setup for the measurement of these parameters for the CAN transceiver by itself. Figure 1 shows the measurement of the total loop delay from the driver input (TXD) to receiver output (RXD). This measurement is done in the recessive to dominant state as shown by $t_{PROP(LOOP1)}$ and the dominant to recessive state as shown by $t_{PROP(LOOP2)}$. Figure 2 measures the variation in the bit width as it propagates through the transmitter to the output and back through the receiver to the receiver output.

Figure 1. t_{PROP(LOOP)}Test Circuit and Measurement

Figure 2. CAN FD Bit Timing Parameter Measurement

CAN devices such as the Grade 0 CAN FD transceiver TCAN1044EV-Q1 can meet the

1

requirements over the temperature range of -40 $^\circ\text{C}$ to 150 $^\circ\text{C}$ as shows in Table 2 .

	ISO 11898-2:2016		TCAN1044EV-Q1	
Parameter	MIN	MAX	MIN	MAX
t _{PROP(LOOP1)}		255 ns		210 ns
t _{PROP(LOOP2)}		255 ns		210 ns
t_{BIT(BUS)} 2 Mbps CAN FD	435 ns	530 ns	460 ns	510 ns
t_{BIT(BUS)} 5 Mbps CAN FD	155 ns	210 ns	160 ns	210 ns
t_{BIT(RXD)} 2 Mbps CAN FD	400 ns	550 ns	445 ns	515 ns
t_{BIT(RXD)} 5 Mbps CAN FD	120 ns	220 ns	145 ns	215 ns

Table 2. CAN transceiver timing specifications

For applications that require isolation between the CAN transceiver and the microcontroller, simply looking at the CAN transceiver timing performance is not enough. It is important to add the timing performance of the digital isolator that is in series with the CAN transceiver to ensure the two-chip solution still meets the timing specification. Isolator datasheets provide the propagation delay and pulse width distortion specifications.

For example, these timing specifications for the Grade 0 ISO7741E-Q1 are shown in Table 3:

Table 3. Digital isolator timing specifications

ISO7741E-Q1 (-40 °C to +150 °C)				
Parameter		MIN	MAX	
t _{PLH} , t _{PHL}	Propagation delay time	6 ns	16.5 ns	
PWD	Pulse width distortion $ t_{PHL} - t_{PLH} $		4.9 ns	

Based on the individual timing specifications for the digital isolator and the CAN transceiver, the combined data can be calculated as follows (as shown in Figure 3 and Figure 4):

Total loop delay from the driver input to the receiver output: CAN loop delay + 2 x Isolator propagation delay time

Figure 3. Total loop delay for isolated CAN system

Minimum bit time on the bus output pins = Minimum CAN $t_{BIT(BUS)}$ time -Maximum Isolator pulse width distortion. Maximum bit time on the bus output pins = Maximum CAN $t_{BIT(BUS)}$ time + Maximum Isolator pulse width distortion. Minimum bit time on the receiver output pins = Minimum CAN $t_{BIT(RXD)}$ time - 2 x Maximum Isolator pulse width distortion. Maximum bit time on the receiver output pins = Maximum CAN $t_{BIT(RXD)}$ time + 2 x Maximum Isolator pulse width distortion.

Figure 4. Total bit time for isolated CAN

Based on the formulae discussed above, the combined timing specifications of the two-chip isolated CAN solution is shown in Table 4.

Table 4. Discrete isolated CAN timing				
specifications				

opeenieutiene					
	ISO 11898-2:2016		ISO7741E-Q1 + TCAN1044EV-Q1 (-40 °C to +150 °C)		
Parameter	MIN	MAX	MIN	MAX	
t _{PROP(LOOP1)}		255 ns		243 ns	
t _{PROP(LOOP2)}		255 ns		243 ns	
t_{BIT(BUS)} 2 Mbps CAN FD	435 ns	530 ns	455.1 ns	514.9 ns	
t_{BIT(BUS)} 5 Mbps CAN FD	155 ns	210 ns	155.1 ns	214.9 ns	
t_{BIT(RXD)} 2 Mbps CAN FD	400 ns	550 ns	435.2 ns	524.8 ns	

Table 4. Discrete isolated CAN timing specifications (continued)

	ISO 11898-2:2016		ISO7741E-Q1 + TCAN1044EV-Q1 (-40 °C to +150 °C)		
Parameter	MIN	MAX	MIN	MAX	
t _{bit(RXD)} 5 Mbps CAN FD	120 ns	220 ns	135.2 ns	224.8 ns	

From the table it is clear that the Grade 0 isolator ISO7741E-Q1 when used along with the Grade 0 CAN FD transceiver TCAN1044EV-Q1, can meet the ISO 11898-2:2016 specifications up to CAN FD speed for 2 Mbps.

This article discussed the key timing specs and calculation examples to determine if the chosen discrete isolator and CAN transceiver can meet the CAN standards. Selecting the right components upfront will ensure the proper CAN system operation and speed up release to production.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated